Genomic time-series data reveal signatures of selection in wild redband trout populations

Joshua P. Egan, Kimberly R. Andrews, Zhongqi Chen, Jonathan Masingale, Christopher C. Caudill, Shawn R. Narum, Timothy E. Link, Paul A. Hohenlohe

Redband trout mechanisms research

 This research identified links between genetic and phenotypic diversity to allow predications of adaptive responses of populations to environmental change.

IOLECULAR ECOLOGY WILEY

ORIGINAL ARTICLE

Whole genome resequencing reveals genomic regions cerk associated went of real diptors fulled systems during heat stress

greb1^{hon}asso¹Ciated With¹²migration timing in anadromous steel<u>head and chinook</u>

rock1 - associated with migration timing in anadromous steel Mead and comparison identifies local adaptation associated with environmental variation for redband trout

Kimberly R. Andrews¹ | Travis Seaborn² | Joshua P. Egan^{3,4} | Matthew W. Fagnan¹ | Daniel D. New¹ | Zhongqi Chen⁵ | Paul A. Hohenlohe³ | Lisette P. Waits² | Christopher C. Caudill² | Shawn R. Narum^{5,6}

Do genomic time series data show signatures of selection in wild populations?

Research objectives

- (1) Identify temporal changes in allele frequencies due to natural selection.
- (2) Characterize overlap between the genomic regions that we found to exhibit signatures of selection and those identified by previous redband trout mechanisms work.
- (3) Identify correlations between temporal fluctuations in allele frequencies and environmental variables.

Redband trout study populations

300 km

• SNP panel: 243 neutral markers and 129 "adaptive" markers

• We generated SNP data for 2648 individuals

Genotype PCAs of adaptive loci show genetic differentiation between drainages and populations

We identified statistically significant signatures of selection in wild redband trout!

Chromosomal position

rock1 and greb1 temporal dynamics

300 km

Are environmental fluctuations driving genomic changes in redband trout populations?

Variable category	Significant association?
Spring maximum temperatures	No
Summer maximum temperatures	No
Timing of spring temperature increases	No
Droughts	No
Timing of peak spring water flows	No
Amount of spring water flow	No
Minimum summer water flows	No

Mean Maximum August Temperatures

Summary and future directions

- The time-series dataset revealed several SNPs under selection in wild redband trout populations
- Kootenai and Snake River Basins exhibit distinct temporal patterns of genetic change
- greb1 and rock1 appear to be major targets of selection in redband trout populations, resulting in major interannual allele frequency changes
- The environmental forces responsible for the fluctuations remain unclear and will be the focus of our ongoing work.

