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IPCC: “[adaptive capacity] is the ability of
systems, institutions, humans, and other
organisms to adjust to potential damage,
take advantage of opportunities, or to
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GEMS3 Trout Mechanisms Working Group

Genomics
A. Patterns of genomic diversity

Genotypes to phenotypes
B,C. How does thermal regime affect the expression of

genotypes and phenotypic performance? (Common Garden) Some of the Trout Team, Hagerman, ID.
September 2019

Stream habitat and population dynamics
C,D. How do population-specific traits and habitat quality affect =S
fitness and population dynamics? (Habitat studies; ABM models) = 4

Watersheds and Socio-ecoloigcal Systems (SES)
E. How do management, land-use, climate and other SES-

related factors affect trout habitat and trout adaptive capacity?
(Geospatial and ABM Modeling)




Phylogenomics of O. mykiss subspecies
sampling underway-sequencing in 2022 —
2023: 170 populations

Legacy samples: 20 collections
of redband trout across
ecotypes (13 sites; n = 632)

Neutral genetic structure indicates
connectivity and isolation is largely related
to geography (Andrews et al. 2022)
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Whole genome resequencing identifies local adaptation
associated with environmental variation for redband trout
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e Evidence of local adaptation
at 12 genomic regions incl.
* Age at maturation
* Migration timing

* GEA found strong signal of
diurnal temperature variation

* Genetic offset analyses
revealed strong genetic shifts
required for persistence of
desert populations under
predicted warming

(a) Genome-wide

(c) Omy25 Region

(d) Omy28 Region: GTseq Migration timing
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Genotypes to Phenotypes: Common Garden

Partition phenotypic variation into genetic and plastic components

Total Variation = Genetic(G) + Environment(E) + GxE

Genetic Rescue Plastic Rescue

Source Genetics Acclimation regimes
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Genotypes to Phenotypes: Common Garden

Partition phenotypic variation into genetic and plastic components
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Genotypes to Phenotypes: Common Garden

Partition phenotypic variation into genetic and plastic components

Total Variation = Genetic (G) +

Environment (E) + GxE

* Thermal tolerance

* Hypoxia tolerance

* Growth

e Maturity

* Swimming

e Cardiorespiratory function
* Behavior, etc.

Genetic Rescue

Plastic Rescue

Acclimation regimes

Physiology <

Chromosome
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Thermal tolerance & performance

CTmax
10l Critical temperature of the organism
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Selection on Cardiac Performance . ) i
. . Ongoing: ID of loci and putative
Ceramide kinase (Cerk 1)

functional basis associated with
0 Acute thermal tolerance .. . ..
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Whole genome resequencing reveals genomic regions

Additional candidate genes
associated with thermal adaptation in redband trout

8,325,450 bp 8,342,894 bp 8,349,579 bp
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Habitat and Watersheds

Maintenance Ration

How many trout can a stream reach support?

2 Desert vs. 2 Montane streams

Net Energy Intake (NEI) = energy gain — (energy costs + losses)

< I e’

food intake swimming costs (water velocity)
cost of capturing prey | Mont
e Desert streams: metabolic costs (temp.) 02 ontane
: 0.1 -
* Higher NEI (a)
0.0 -
0.7 -

* Higher trout biomass and size
Desert

Proportion Habitat NEI > Maintenance El

* Higher apparent survival e
Anna Ringelman & Ernest Keeley, ISU z'j |
* Predicted habitat suitability .
declined with under warming, 0y Montane
especially for larger trout o
- (b) Anna Ringelman 2021

| | I I
Jul. Aug. Sep. Oct.



Habitat and Watersheds

Stress physiology in field populations
2 Desert vs. 2 Montane streams

* Cortisol levels higher in desert

* But not stressful concentrations

* Body condition similar between stream
types

* Growth potential higher in desert
stream despite higher temperatures

Alex Wooding & Develeena Pradhan, ISU
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Empirical Integration: Agent-based Modeling

CDMetaPOP

Dynamic Stream Environment:

100 m reach “Patches” each with:

SES Model
-Temperature (NorWeST) Scenarios

-"Habitat Quality” (growth, survival)
-Connectivity
2 “seasons” each year for multiple decades

Individual Trout:

Loci allow for Genetic Adaptation
-Temperature-dependent growth & mortality
Behavior
-Straying among natal sites
Plasticity

-Habitat selection (temperature experience)

_.--» RCPs/SSPs
X \ BRI RBT Distribution Environ.njmental
Conditions
Land-use
\ Fisheries policy and alternative
Climate & other shared management actions

. -omics
GEM3 Mapping

Travis Seaborn

GEMS Geospatial
Models \

nitial Condition Scenarios

Common Garden ‘ .

Field Ecology

/

Agent-based
Models
]

" Forecasted Population

. .
Adaptive Capacity
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Simulating plasticity as a framework for understanding habitat
selection and its role in adaptive capacity and extinction risk
through an expansion of CDMetaPOP

Travis Seaborn®?® | Erin L. Landguth®® | Christopher C. Caudill*

GEM3 Partner: Erin Landguth

Computational Ecology Lab
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Agent-based Modeling: WIP

Dispersal: Stray %
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Agent-based Modeling: WIP

Next Step: Scenario Modeling Preliminary Stream temperature

Climate SSPs

° ° e M 4 NorWeST summer stream temperature model and scenarios for the western US: A crowd-sourced database and new
I p a r I a n o n I I o n ra z I n g geospatial tools foster a user community and predict broad climate warming of rivers and streams. Water Resources

Fire History
Plasticity

inputs from NorWeST Model for
future stream temperatures

(Isaak, D. J., Wenger, S. J., Peterson, E. E., Ver Hoef, J. M., Nagel, D. E., Luce, C. H., ... & Chandler, G. L. (2017). The

c
Research, 53(11), 9181-9205)

2019 . 2049 S 2099

Adaptive potential < rate of environmental change



Watersheds: Modeling thermal and flow regimes
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Baseline Mann Creek Hydro-climate model

e Stream size, riparian vegetation and
groundwater interact

 Warmest reaches are small and at higher
elevations
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Watersheds: Modeling thermal and flow regimes
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Watersheds: Modeling thermal and flow regimes

Updated_timeSeriesVideo_Aug28_2023.mp4

UAS mapping of
seasonal thermal
refugia: integration
of the 3Ms
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Watersheds: Modeling thermal and flow regimes
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Watersheds: Modeling thermal and flow regimes
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Watersheds: Modeling thermal and flow regimes
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SES and redband trout

* Applying genomics to assisted
migration (Chen et al. 2022)

Develop Candidate Markers to Genotype

Individual Genotype-phenotype
Many Individuals (e.g. GT-seq)

Validation & Surverys

Prioritize Source and
Recipient Populations

Marker 1

O 250 *
8 <
3 » 8 24.0
2 c
8 S 230
~ K
o 2 220
] T
< E 210

0.0
AA AT TT
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e ——— N
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Allele 1 counts
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Applying genomics in assisted migration under climate change:
Framework, empirical applications, and case studies

Zhongqi Chen'® | Lukas Grossfurthner? | Janet L. Loxterman® | Jonathan Masingale! |
Bryce A. Richardson®® | Travis Seaborn®® | Brandy Smith® | Lisette P. Waits* @ |
Shawn R. Narum®®

 Using social-ecological models to explore
stream connectivity outcomes for
stakeholders and Yellowstone cutthroat
trout (Jossie et al 2023)

Quaditative mental
modeling

A Decisions

Quantitative
agent-based
modeling

Reslorabon propects
krigation methods
Managemen! practces

A Connectivity

4 Flows
A Barriers
A Habitar condé'ons

Elizabeth Jossie, ISU

A ; ' Y ) V ) v , T
'Migramry life’ ‘ ) = = / e Human
history Hybridization \ Competition | | Predation . outcomes |



Summary and Emerging Patterns

CTmax
30| Critical temperature of the organism

 What factors are most sensitive to changing environments? 29 —
 Plastic traits will be important in core habitat &
* Genetic adaptation allows persistence at edge of thermal limit
* Desert populations may be at “hard ceiling”

* Where are the ‘surprises’?

e Strong signal of selection from thermal variability as well as maximum
temperature-key test of common garden ‘cohort 3’

* Desert streams productive but periodically lethal
e Future thermal conditions not always intuitive at local scale

* What are key unknowns?
» Effects and costs of plasticity?
* G, GXE of movement and dispersal
 Temperature, GXE, microbiomes and pathogens (Egan et al.; Bledsoe et al.)
* Scope of inference: Do these patterns hold in other species and systems?

* Genetic, plastic, and habitat factors contribute to local adaptive
capacity

o4
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SES Adaptive Capacit

“ability of systems, institutions,
humans, and other organisms to
adjust to potential damage, take

advantage of opportunities, or to
respond to consequences” (IPCC)

Rainbow Trout (Oncorhynchus mykiss)

Biological Adaptive
Capacity

“Ability... to cope with climate
change... by phenotypic
plasticity, dispersal ability, and
genetic diversity” (Beever et al.
2016)
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GEM3 Trout Mechanisms Working Group Workflow
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Agent-based Modeling: WIP

Habitat Selection can increase individual survival but decrease abundance (Perfect thermal selection, no cost to plasticity)

Latitude

Jack's Creek 100

= Baseline
.q"..»", L)~

427 -7’".@\"‘ ¢

Keithley/Mann 100

4254

> |
4244 -
e _,..d.a 'pf‘cqt‘l q n

o

Latitude

Desert

1183 -116.2 -116.1 -116.0 -1159 -116.3 -116.2 -116.1 -116.0 -115.9

Longitude

Montane



